Epithelial to mesenchymal transition (EMT) reflects changes in cell behaviour essential for development, and physiopathological processes. The environment induces variability in cells shape and molecular markers of the EMT. Hence, there is a relevance of population cellular heterogeneity during EMT. State-of-the-art mostly reflects the impact of the microenvironment at the population scale. The questions remains: How does the microenvironment alter cell heterogeneity during EMT ? ̈
Our projects are focused to design dynamic perturbations of microenvironment-cell interactions.
We use an atypical model ovarian cancer cell lines to study cell microenvironment interactions. We will lift 3 main limitations hindering study of cellular heterogeneity relationship with microenvironment: measure population cell heterogeneity quantitatively, control the microenvironment, modulate cell microenvironment interactions. The funded project (Modulo-EMT) provides an original multidisciplinary toolbox to study heterogeneity and allow to predict cell heterogeneity depending on the microenvironment for tissue engineering or develop new drug treatments.
The Ph.D student will design innovative tools to measure, modulate and track EMT in tailored matrix proteins microenvironment. Candidate will be recruited in the MEC-uP T eam (https://errmece.u-cergy.fr/?page_id=103) for a period of 3 years in ERRMECe lab (https://www.cyu.fr/errmece-equipe-de-recherche-sur-les-relations-matrice-extracellulaire- cellule).
Applicants should feel confortable with interdisciplinary science : cell biology/biochemistry experimental work and quantitative image analysis using custom software. Prior Knowledge in coding is a plus.
Candidate should have good scientific english written and spoken skills and self-motivated to work in multidisciplinary teams.
Ph.D expected start date : October 2021/January 2022.
Duration : 3 years
Deadline to apply : 23rd August 2021
Please send a CV, motivation letter and references of previous supervisors to contact listed below
Contact : ambroise.lambert@cyu.fr/olivier.gallet@cyu.fr/franck.carreiras@cyu.fr https://www.ambroise-lambert.com/home
https://www.cyu.fr/errmece-equipe-de-recherche-sur-les-relations-matrice- extracellulaire-cellule
References :
https://www.pnas.org/content/113/29/8133/tab-article-info https://pubmed.ncbi.nlm.nih.gov/24946950/
Dems, D., Rodrigues Da Silva, J., Hélary, C., Wien, F., Marchand, M., Debons, N., Muller, L., Chen, Y., Schanne-Klein, M.-C., Laberty-Robert, C., Krins, N., Aimé, C.* Native collagen: electrospinning of pure, cross-linker free self-supported membrane. ACS Applied Bio Materials, 2020, 3, 2948-2957.